Fast curve estimation using preconditioned generalized Radon transform

نویسندگان

  • Kim V. Hansen
  • Peter Aundal Toft
چکیده

A new algorithm for fast curve parameter estimation based on the generalized Radon transform is proposed. The algorithm works on binary images, obtained, e.g., by edge filtering or deconvolution. The fundamental idea of the suggested algorithm is the use of a precondition map to reduce the computational cost of the generalized Radon transform. The precondition map is composed of irregular regions in the parameter domain, which contain peaks that represent curves in the image. To generate the precondition map, a fast mapping procedure named image point mapping is developed. As the image point mapping scheme maps image points into the corresponding parameter values in the parameter domain, it is possible to improve computational efficiency by recognizing image points with value zero. Initially, the suggested algorithm estimates the precondition map and subsequently applies the generalized Radon transform within the regions specified by the precondition map. The required parameter domain sampling and the resulting blurring are also investigated. The suggested algorithm is successfully applied to the identification of hyperbolas in seismic images, and two numerical examples are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the generalized Radon transform for detection of curves in noisy images

In this paper the discrete generalized Radon transform will be investigated as a tool for detection of curves in noisy digital images. The discrete generalized Radon transform maps an image into a parameter domain, where curves following a specific parameterized curve form will correspond to a peak in the parameter domain. A major advantage of the generalized Radon transform is that the curves ...

متن کامل

Seismic Imaging with the Generalized Radon Transform: a Curvelet Transform Perspective

A key challenge in the seismic imaging of reflectors using surface reflection data is the subsurface illumination produced by a given data set and for a given complexity of the background model (of wavespeeds). The imaging is described here by the generalized Radon transform. To address the illumination challenge and enable (accurate) local parameter estimation, we develop a method for partial ...

متن کامل

A Fast and Novel Skew Estimation Approach using Radon Transform

In this paper, an effective and reliable skew estimation technique for machine printed documents and photos using radon transform is proposed and is compared with other methods used for skew estimation such as Fast Fourier Transform (FFT), Hough Transform (HT), combination of Horizontal Projection Profile (HPP) and Hough Transform, combination of Gabor filter and Radon transform, combination of...

متن کامل

Fast Slant Stack : A notion of Radon Transform for Data in a Cartesian Grid which is

We define a notion of Radon Transform for data in an n by n grid. It is based on summation along lines of absolute slope less than 1 (as a function either of x or of y), with values at non-Cartesian locations defined using trigonometric interpolation on a zero-padded grid. The definition is geometrically faithful: the lines exhibit no 'wraparound effects'. For a special set of lines equispaced ...

متن کامل

Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 1996